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Further Understanding of Hydrogen Atom:
Yangian Approach and Physical Effect

Cheng-Ming Bai,1 Mo-Lin Ge,1, 2 and Kang Xue1, 3
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By applying the representation theory of Y(sl(2)) to Hydrogen atom (HA) the
correct spectrum are re-derived. This indicates the consistence between HA and
the Yangian algebraic structure and guarantees that there is democracy between
angular momentum L and Yangian current J in the sense of conserved currents.
The physical effect of Yangian in HA has been predicted that preserves all the
known results for HA, but gives rise to abnormal intensities in the spectrum
lines near the free state.
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1. INTRODUCTION

There is a close relationship between quantum mechanical models and Lie
algebras for the existence of symmetries. It is well-known that Lie algebra
describes the linear quantum space, i.e., quantum vector space. However, in
many-body problems it is inevitable to meet tensor quantum space, for
example, for interaction-spins located on different sites in a lattice. Hence,
it is natural to extend Lie algebra to more general one. Among many possible
candidates the preference is Yangian algebra presented by Drinfel'd(1�3) for
the notable reasons:(4) (a) Yangian is related to RTT relation (5�8) that
describes a large number of integrable models; (b) there appears natural con-
nection between spectral parameter (viewed as one-dimensional momentum)
and internal symmetry in Yangian representation; (c) the representation
theory of Yangian had been well-established by Chari�Pressley.(9)
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As far as the physical applications of Yangian are concerned, besides
the models with Yangian symmetry, (10�14) a simple example is Hydrogen
atom (H-A). Since Pauli, people are familiar with the so(4) symmetry for
H-A, i.e., there are two conserved vectors��angular momentum L and
Pauli�Runge�Lenz vector A=1

2 (L_P&P_L)+}r�r where P the momentum
and } the charge. Both of them commute with the Hamiltonian H0= 1

2 P2

&}�r. For the bound state, putting B=1�- &2H0 A, then L and B form
the relations:

[L* , L+]=i=*+&L&

[L* , B+]=i=*+&B& (*, +, &=1, 2, 3) (1.1)

[B* , B+]=i=*+&L&

that lead to so(4) symmetry by introducing

I1= 1
2 (L+B), I2= 1

2 (L&B) (1.2)

satisfying

[Ii* , Ij+]=i=*+& $ij Ii& (i=1, 2) (1.3)

For H-A without monopole

L } B=B } L=0 (1.4)

hence, one has

I2
1=I2

2=&1
4 ( 1

2 H &1
0 }2+1) (1.5)

If we denote by k(k+1) the eigenvalues of I2
1=I2

2 , (k=0, 1
2 , 1,...) from

Eq. (1.5) it follows immediately the spectrum of H-A:

En=&
}2

2n2 (n=2k+1) (1.6)

All the above historical derivations are based on the properties of vector
space. However, actually the H-A is described in terms of ``spinors'' I1 and I2 .
The vector L obeys

L=I1+I2 (1.7)
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and eigenvalues of L2=l(l+1) are l=2k, 2k&1,..., 0. In general, l can be
written as

l=2k& p, p=0, 1,..., 2k (1.8)

Therefore, essentially H-A takes quantum tensor space formed by I1 and I2 .
Since H-A possesses Yangian symmetry, (15) it is natural to ask whether the
representation theory of Y(sl(2)) guarantees the correct spectrum given by
Eq. (1.6). This is highly nontrivial, because Yangian is much larger than
Lie algebra and the representations of Yangian are completely different
from those of Lie algebras. In this paper we would like to show the following
new results:

(a) the representation of Yangian working in tensor space gives the
correct spectrum of H-A;

(b) the conserved Yangian current is naturally introduced that it is
more general than the usual angular momentum L.

(c) the physical effect of Yangian in H-A is presented that preserves
all the known theoretical and experimental results of H-A, but changes the
intensity of the spectra near the free states at large n and l where n and l
are principle and angular momentum quantum numbers, respectively.

For the self-contained we first introduce the main conclusions of
representations of Y(sl(2)), then apply them to H-A without and with
monopole. Finally, the prediction of a new sort of abnormal Zeeman effect
due to Yangian is presented.

2. Yoslo2pp AND EIGENVALUES OF J2

Yangian algebras were established by Drinfel'd in his three original
papers which are referred to refs. 1�3 for details. A Yangian is formed by a
set [I, J] obeying the commutation relations (together with the co-product
given in ref. 1),

[I* , I+]=c*+&I& , [I* , J+]=c*+&J& (2.1)

[J* , [J+ , I&]]&[I* , [J+ , J&]]=h2a*+&:;#[I: , I; , I#] (2.2)

[[J* , J+], [I_ , J{]]+[[J_ , J{], [I* , J+]]

=h2(a*+&:;#c_{&+a_{&:;# c*+&)[I: , I; , J#] (2.3)
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where the set of I* forms a simple Lie algebra characterized by c*+& and
the repeated indices mean summation. The definitions of a*+&:;# and
[xi , xj , xk] were given in ref. 1,

a*+&:;#=
1
4!

c*:_ c+;{c&#\c_{\

(2.4)

[x1 , x2 , x3]= :
i{ j{k

x ix jxk (symmetric summation)

and through the mapping shown in ref. 3, Eqs. (2.1)�(2.3) can be connected
with the ``new realization of a Yangian'' defined in ref. 3. For Y(sl(2)) the
Eqs. (2.1)�(2.3) can be simplified.

Firstly, both sides of Eq. (2.2) are zeros and (h an arbitrary constant)
with the notations I\=I1\iI2 , J\=J1\iJ2 , a direct calculation verifies
that Eq. (2.1) can be recast as

[I3 , I\]=\I\ , [I+ , I&]=2I3 (2.5)

[I3 , J\]=[J3 , I\]=\J\

[I+ , J&]=[J+ , I&]=2J3 (2.6)

Furthermore Eq. (2.3) becomes

[I\ , [J3 , J\]]= 1
4h2I\(I3 J\&J3I\) (2.7)

that together with Eqs. (2.5�2.6) and Jacobian identities yield all of the
relations in Eq. (2.3), i.e., most of ones in Eq. (2.3) are not independent.
The algebraic meaning of Y(sl(2)) is clear that it contains sl(2) shown by
Eq. (2.5) as a subalgebra. The other three new generators J are beyond
sl(2) itself and obey Eq. (2.6) and nonlinear commutation relations
Eq. (2.7). There are many physical realizations of Y(sl(2))=Y(I, J) satis-
fying Eq. (2.5)�Eq. (2.7) that can be made in terms of spin-chain and in
elementary Quantum Mechanics, see refs. 10�14, 16.

There has been mathematical theory of representation of Y(sl(2))
referring to Chari and Pressley.(9) To follow the theory let us consider the
tensor basis in sl(2)-algebraic space

0p= :
p

i=0

(&1) i (m&i)! (n& p+i)!
m! (n& p)!

(em&i�en& p+i ) (2.8)

where the coefficients essentially are nothing but the Clebsch�Gordan coef-
ficients and em#em, m is basis of sl(2) with the highest third component for
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a given weight m�2. For convenience the notations in ref. 9 have been used.
The relationship between em and those which have been familiar in Physics
is the following: m=2j and for M�1

ej, j&M=_ j( j&1�2) } } } ( j&M�2+1�2)
M! &

1�2

� j, j&M (2.9)

em#em, m W ej, j=�j, j (2.10)

The 0p is eigenstate of operator J2=J } J. There is big difference between
eigenvalues of J2 and I2 for the following reason. Suppose I and J satisfy
Yangian relations Eq. (2.5)�Eq. (2.7), so do I and *I+J where * is an
arbitrary parameter. It is called ``translation'' of Yangian. Furthermore, it
turns out that the set

I= :
N

i=1

Ii (2.11)

1 (i> j)
J=\ih

8 + :
N

i{ j

=ijIi_Ij \=ij=0 (i= j)+ (2.12)
&1 (i< j)

satisfies Y(sl(2)), i.e., Eq. (2.5)�Eq. (2.7) where i can either specify particle
or lattice site. The direct check verifies that the ``local translation'' of J
given by Eq. (2.12) still satisfies Y(sl(2)):

I= :
N

i=1

Ii

(2.13)

J=
Qh
4 \ :

N

i=1

+iIi+
i
2

:
N

i{ j

=ijIi_Ij+
where +i 's are arbitrary (complex) constants. Equation (2.13) indicates that
J is spectral parameters dependent (+i ) operator, so that the representation
of Y(I, J) should depend on the spectral parameter that is completely dif-
ferent from the Lie algebraic one. The physical meaning of such a dependence
can be understood in such way that in Yangian description the internal
degree of freedom is connected with the spatial behavior, for example,
+i may be momentum or phase shift along a lattice. As usual, Yangian is
related to integrable models where the spin flip often gives rise to change
one-dimensional momentum (spectral parameter) in Bethe ansatz problem.
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For simplicity we consider the case N=2, then Eq. (2.13) is written in
the form

I=I1+I2 (2.14)

J=
ih
4

(aI1+bI2+I1_I2) (2.15)

where a and b are arbitrary constants. Acting J2 on 0p we find eigenvalue

J20p=Im, n(a, b; p) 0p (2.16)

where

Im, n(a, b; p)=m \m
2

+1+ a2+n \n
2

+1+ b2

+[(m&2p)(n&2p)&2p( p+1)] ab

&
1
4

ml(m+n)&
p
2

(m+n&1& p)

_[mn+2& p(m+n+1& p)] (2.17)

Noting that in I(a, b; p) there appears the ``interference'' term coming
from the overlapping between space 1 occupied by I1 and space 2 by I2 .
This is because I(a, b; p) comes from the co-product of operator J.(9) In
general, J2 is not necessarily Hermitian.

Equipping with the above knowledge we come to employ the Yangian
theory to H-A.

3. REPRESENTATION OF Yoslo2pp AND SPECTRUM OF
HYDROGEN ATOM

As was pointed out in ref. 15 that for H-A the set formed by

I=L=I1+I2 (3.1)

and

J=
ih
4

L_B (3.2)
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satisfies Y(sl(2)) and [H0 , I]=[H0 , J]=0 i.e., [H0 , Y(sl(2))]=0, where
B=1�- &2H0 A and A is Pauli�Runge�Lenz vector. In comparison to
Eq. (2.15) on account of Eq. (1.2) we have

a=&1, b=1 (3.3)

Recalling the eigenvalue formula of J2 Eq. (2.17) for any a and b it can be
recast to

Ij1 , j2
( p)=

h2

16
[ j1( j1+1) a2+ j2( j2+1) b2

+[2( j1& p)( j2& p)& p( p+1)] ab]

&
h2

4 {( j1+ j2) j1 j2+
p
4

(2j1+2j2+1& p)

_[4j1 j2+2& p(2j1+2j2+1& p)]= (3.4)

where m=2j1 , n=2j2 have been used.
For j1= j2=k and b=&a=1, Eq. (3.4) is simplified to

Ik=\+
h2

16+ (2k& p)(2k& p+1)[&4k(k+1)+(2k& p)(2k& p+1)+1]

(3.5)

We emphasize that Eq. (3.5) is completely the consequence of representa-
tion of Y(sl(2)) for b=&a=1 and j1= j2=k (I2

1= j1( j1+1)) and J2 only
works in tensor space.

Now let us turn to H-A. On account of Eq. (3.2) it is easy to find

J2=\&
h2

16+ L2(B2&1) (3.6)

Noting that

L2=I2
1+I2

2+2I1 } I2 (3.7)

whose eigenvalue is l(l+1), whereas

B2=I2
1+I2

2&2I1 } I2 (3.8)
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whose eigenvalue is 4k(k+1)&l(l+1) for H-A without monopole which
leads to I2

1=I2
2=k(k+1). Of course, since L=I1+I2 , the eigenvalues of l

take (2k+1) values: l=2k& p, ( p=0, 1,..., 2k). Substituting Eq. (3.7) and
Eq. (3.8) into Eq.(3.6) it follows the eigenvalue of J2:

I=\h2

16+ l(l+1)[&4k(k+1)+l(l+1)+1] (3.9)

On the other hand the direct calculation of J2 in terms of L and B gives

J2=
h2

16
L2 \L2+

1
2

H &1
0 }2+2+ (3.10)

whose eigenvalue

I=
h2

16
l(l+1) _l(l+1)+

}2

2E
+2& (3.11)

Identifying Eq. (3.9) with Eq. (3.11) it yields

E=&
}2

2(2k+1)2=&
}2

2n2 \k=0,
1
2

, 1,...+ (3.12)

Substituting l=2k& p into Eq. (3.11) the eigenvalues of J2 on the basis of
direct calculation for H-A are given by

I=
h2

16
(2k& p)(2k& p+1)[(2k& p)(2k& p+1)+1&4k(k+1)] (3.13)

that is exactly the same as Eq. (3.5) given by Yangian representation inde-
pendently.

It may argue that since the spectrum are completely determined by J2

from the point of view of Yangian, whereas J subjects to an arbitrary trans-
lation, i.e., J � J+*I still preserves Y(sl(2)), the translation term *I may
change the spectrum Eq. (3.12). The answer is negative. The direct calcula-
tion shows that such a translation does not change the spectrum at all.

Therefore based on the tensor space of I1 and I2 i.e., so(4) space we
have shown that the ``current'' J provides the correct spectrum of H-A in
terms of the representation of Yangian. The deep reason for this is H-A is
related to RTT relation(16) which is also the origin of Yangian, otherwise
it is almost not possible to meet such a nice consistence.
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4. Yoslo2pp AND HYDROGEN-LIKE ATOM WITH MONOPOLE

When Hydrogen-like atom possesses monopole the Hamiltonian reads

H=
?2

2+
+

1
2+

q2

r2 &
}
r

, ?= p&zeA (4.1)

where + is mass, q=zeg, }=ze2 and g being monopole charge. The corre-
sponding mechanical angular momentum and rescaled Pauli�Runge�Lenz
vector are

L$=
1
2

(r_?&?_r)&q
r
r

, B$=
i

- 2+H
R$ (4.2)

R$=
1
2

(?_L$&L$_?)&
+}
r

r (4.3)

I$1=
1
2

(L$+B$), I$2=
1
2

(L$&B$) (4.4)

In difference from H-A without monopole it holds(16, 17)

L$ } B$=B$ } L$=I$2
1 &I$2

2 =q �&
+}
2H

(4.5)

when q{0 we have

I$2
1 =

1
4 _\q+�&

+}
2H+

2

&1& (4.6)

where

q=| j1& j2 | (4.7)

Since I$1 and I$2 still obey so(4) as I1 and I2 do, we shall do not distinguish
the quantum numbers for I$2 from those for I2. We find

E=&
+}2

2
1
n2 , n= j1+ j2+1 (4.8)

where I$2
i = j i ( ji+1) (i=1, 2). It turns out that

l= j1+ j2& p=n& p&1 (4.9)
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where

L$2=l(l+1), l={0, 1,..., n&1
1�2, 3�2,..., n&1

n=integer
n=half integer

(4.10)

and

q={0, 1,..., n&1
1�2, 3�2,..., n&1

n=integer
n=half integer

(4.11)

The Eq. (4.11) does not mean that q should be equal to l, rather, for
example,

n=1, j1= j2=0: l=q=0

n= 3
2 , j1= 1

2 , j2=0; j1=0, j2= 1
2 : l=q= 1

2

n=2, j1=1, j2=0 or j1=0, j2=1: l=1, q=1

j1= j2= 1
2 : l=1, 0, q=0

n= 5
2 , j1= 3

2 , j2=0, or j1=0, j2= 3
2 ; l= 3

2, q= 3
2

j1=1, j2= 1
2 or j1= 1

2 , j2=1: l= 3
2 , 1

2 , q= 1
2

obviously, this is because l stands for the quantum number related to the
vector sum of I$1+I$2 , whereas q is the difference of I$1 and I$2 , but there are
degeneracies.

In parallel to Section 2, for H-A with monopole we have

J$2=\&
h2

16+ [L$2(B$2&1)&(L$ } B$)2] (4.12)

and

B$2=&\L$2+
+}
2H

+1++q2 (4.13)

hence

J$2=
h2

16 {L$4+
+}2

2H
(L$2&q2)+(2&q2) L$2= (4.14)
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Recalling j1+ j2=l+ p ( p=0, 1,..., j1+ j2) we obtain eigenvalues of J$2:

I$=&
h2

16
[[(l+1)(2p+1)+ p2][l(l+1)&q2]&2l(l+1)] (4.15)

After computation Eq. (4.15) can be recast to

I$=
h2

16
[ j1( j1+1)+ j2( j2+1)&[2( j1& p)( j2& p)& p( p+1)]

&4( j1+ j2) j1 j2& p(2j1+2j2+1& p)

_[4j1 j2+2& p(2j1+2j2+1& p)]] (4.16)

which is exactly the same as Eq. (3.4) for b=&a=1. When there is
monopole the commuting set [H0 , L2, L3] is enlarged to the set
[H, L2, L3 , J2]. For fixed n on substituting p=n&1&l into Eq. (4.15) we
obtain

I$=\&
h2

16+ [[(l+1)(2(n&1&l )+1)+(n&1&l )2][l(l+1)&q2]

&2l(l+1)] (4.17)

It is interesting to point out that eigenstate 0p is related to the monopole-
spherical harmonic presented by Wu and Yang.(18)

In conclusion, if there is monopole it allows j1{ j2 ( | j1& j2 |=q), the
eigenvalue of J$2 still completely determines the spectrum of H-A with
monopole and coincides with the representation of Y(sl(2)) for j1{ j2 (i.e.,
m{n in Eq. (2.8)).

5. YANGIAN EFFECT IN HYDROGEN ATOM

For H-A (without monopole) we have shown that the ``conserved
current'' L can be extended to

J=*L+
ih
4

L_B (5.1)

where * is an arbitrary constant. For h=0 it reduces to the usual angular
momentum and for h{0 J2 generates the same eigenvalues of energy. The
extended current J is conserved

[H0 , J]=0 (5.2)
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and acts on the tensor space in so(4). The term L_B represents a new type
of interaction acting on tensor space.

Now, is there new effect of J other than the re-determination of correct
spectrum for H-A only? Theoretically, the answer is yes, even the effect is
so small that it does not change all the known results for H-A and hard
to observe.

The predicted effect of J is to find Zeeman effect for J, rather that L
itself. The degeneracy for J will be removed by applied magnetic field
B=B0ez where B0 is constant. The interaction Hamiltonian

HI=+B } J=+B0J3 (5.3)

where J is given by Eq. (5.1).
The transition caused by HI consists in computing

==(�n$, l $, m$ | HI |�n, l, m) (5.4)

where �n, l, m is the eigenfunction of H-A. We observe that the interaction
B } (L_B) breaks the time-reversal invariance, so that it gives rise to very
small contribution to (HI). This is the reason why the perturbation can
be used well. Nothing is surprise to appear such an effect under an applied
magnetic field. There is often time-reversal broken effect in Chern�Simons
type of interaction.

The energy correction besides the usual Zeeman effect (Elt+B0L3)
can be found:

=l (Yangian)=(const) n|l[l $(l $+1)+l(l+1)

+2}(r� n, l $+r� n, l)](n, l $ | x3 |n, l) (5.5)

where l $=l+1, |l=((=l $&=l)�h) and r� n, l stands for the average radius at
the (n, l )-orbit. The bracket represents the dipole transition between l and
l $=l+1 states. Since the effect is very small we should take n and l as
larger as they could. The current experiments can reach n�100, corre-
spondingly we should take large l so that l $rl, hence

=l (Yangian)tnl 2 } dipole transition (5.6)

that occurs near the free state. It is worth to note that such a correction
does not change all of the spectrum. It only changes the intensities of the
spectral lines that are proportional to l 2 rather than the usual linear
dependence. This may be called Yangian abnormal Zeeman effect in H-A.
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To conclude this section we would like to state that in preserving all
the known results for H-A there are democracy between L and J given by
Eq. (5.1). The later gives rise to new effect regarding the abnormal inten-
sities of spectrum lines at large n and l even though very small.
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